T-RECS: Build; Model; System Identification

Kedar More

Abstract

This report documents the modelling and system identification of Trans-
portable Rotorcraft Electronic Control System (T-RECS). It goes through the
process step by step from the construction of the system to the initial testing.
Some experiments are run to find out the exact dynamical model and convert it
into a transfer function. This will be used to study the system and get the best
PID control parameters to stabilise it.[2]

Figure 1: TRECS Assembly

Assembly

. First I created the base for the assembly with 5 part fit into each other by the
grooves provided. This will provide some space to clamp and ground the system.
A slot for input barrel plug is provided in on of the parts.

Figure 2: Base of the Assembly

2. After that I assembled 2 pillars with the bearings placed in the larger holes to
support the two shafts. The standoffs (both original and custom) were tightened
in the holes provided around the larger holes. The pillars were assembled such
that I had to place the individual parts inside the slots on the base and then glue
them together. The side with bearing in placed inside and the custom hole is
placed on the right hand side as viewed from the clamping side.

Figure 3: Pillars assembled

3. Next thing to assemble is the arm and attach it to the pillar by the shafts. the
top part on the pillars is there just to keep them together and prevent the system
from going haywire if the motor starts rotating more than needed. But this was
hindering the motion of the arm and an unnecessary friction was introduced. So
I opted to give the part a cut from the center.

Figure 4: Arm assembled and a cut made on the top part

4. After that make all the electronic connections with the motor, encoder circuit
and the Arduino Nano.

12¥

Figure 5: Wiring Schematic[4]

Figure 6: Assembly with wiring and components

2 System Identification

System Modeling
1. Free Body Diagram

......................

bearing
P (rotor propulsion)

Pillars

mg*sin(e)

mg*cos(e) -

| 4

mg

(gravity)

Figure 7: Free Body Diagram of the Arm

2. Calculations

Here,
J = Moment of Inertia
d = Drag

L = Length of Arm
J6 = PL — dLO — mgL cos

0= %(P—dé—mgcos@)

This is the original equation without linearization. The equation should be of
the form

Output = System x Input
0=Gx%P

P = %é+d9+mgcos€

Electronic Components

1. BLDC Motor
The rotor used is Racerstar Racing Edition BR1306.

Figure 8: BR1306 BLDC Motor[6]

This motor has the following specifications:

5

(a) Brand: Racerstar
(b) Item name: BR1306 3100KV Motor
(¢) KV: 3100
(d) Stator Diameter: 17.6mm
(e) Stator Length: 12.7mm
(f) Shaft Diameter: M5
(g) Motor Dimensions(Dia.*Len): Phi;17.6times;14.5mm
(h) Weight (g): about 11g
(i) No.of Cells(Lipo): 1-2S
(j) Max Continuous current(A): 6.6A
(k) Max Continuous Power(W): 49W
)
)

(1) Internal resistance:

(m

Physics of Rotor:

Usage: for 150-200 Glass Multirotor Frame Kit

Pressure exerted by slower-moving air

Figure 9: Principle of propeller lift[5]

There is a simple Bernoulli’s equation which helps us find the upward force.

1 1
P1+§pvf :P2+§pvg

where P is the force, p is the density of the medium and v is the velocity of the
medium.

The shape of propeller enables the air to flow smoothly from above and restricts
the air below it.

Let us consider that 1 is the place above the propeller and 2 is the place below

it.

Therefore v; > vy and the density pof the medium is constant. This in turn states

that P, < P,. This difference in the force promote the upward propeller motion.
2. ESC

ARRIS Swift Series BLHeli 20A 2-4S BEC 5V /1A Brushless ESC for RC Multi-

rotor

Figure 10: ESCI1]

The ESC has following specifications:

) Programe: BLheli, support oneshot 125
b) Continuous Current: 20A

(¢) Burst Current (10S): 30A

(d) BEC: 5V/1A

(a
(

(e) Lipo Cells: 2-4S

(f) Weight: 10g

(g) Size (excluding plugs): 28 x 15 x 6mm

(h) Typical Applications (for reference): 330-550 Multi-rotor

3. Potentiometer

Schematic:
+ Resistor
Battery ——
i
Potentiometer

‘;!LED

Figure 11: Schematic of Potentiometer[7]

Potentiometer is a three pin component with a Vece, Ground and the sliding
pointer which changes the internal resistance. The output of the pointer pin is
the ratio of the the two resistances on the opposite sides of the pointer pin. There
is another resistor in series to the potentiometer resistor which is the current
limiting resistor. This prevents the current from being too high while it is inpput
into a microcontroller pin.

4 Experiments

According to the lumped parameter analysis the following equation is to be solved.

P = %é—i—dé—i—mgcos&

9/’+mL29/+%c089: %
A_miﬂ

The experiments done are based on the open loop system with the only one sensor
used. Potentiometer is used to take angle from the system in degrees. This feedback is
used as the output of our equation in degrees with the input being input of the motor.

1. Drop Test

Let us eliminate of of the parameter that is the propeller force P by making
it 0. In the physical model it represents that the motor is turned off. Under the
influence of gravity the arm will fall down when we give an initial speed as 0.
Here I recorded the angles of the arm with the corresponding time stamp.

The angles and time were plotted against each other and the curve was fitted
as a 3rd degree polynomial. This is the equation for the angle of the arm with
the horizontal. This curve was differentiated to get the value for #’. The same
procedure was done with the 8" values to get 6" values.

Here we get a system of over defined equations with the coefficients as:

0" + A0’ + Bcosh =0

The method of solving these equations is by using the pseudo-inverse of the input
matrix with a zero output matrix. This will fetch us the non trivial solution of
the equations of the form:

(076" cos O]z = [0]

Calculations:

The fitted equation of the 3"¢ degree polynomial fitted curve between cos of the
angle and time is

cosf = —237.6t3 + 5.743t% + 2.21t + 0.8971

and the curve between time and angle is

0 = 487.7t3 — 1751t — 295t + 26.24

with the subsequent derivatives of angle, curve between time and angle’ is

0 = —6.958t% — 1.599¢ + 0.1738

curve between time and angle’ is

0" = —0.02698t 4+ 0.0001268

Drop Test

081 — origianal

fitted N

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.2 “"’* Annn
021 I

rrra MmN
R 1177

T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

cos of angle

u““ i v“v“""u“v*ﬁ*‘"u"‘vﬁ‘“"vkv“vﬁvﬂ"l‘ l vkvhvkv‘hv"""ﬁf"'ﬂvh “A

Figure 12: Drop Test

1 4/Industrial Automation/Projects/8/serialread.py”

a', theta'': [-70.78741767 .00132743

Figure 13: Drop Test Results

10

From this experiment we get the following lumped parameters:

A =37.001, B = —70.707

B == =-70.707

9
L
L =0.1387m = 13.874cm

2. Steady State Test

Now let us consider some input given to the motor. I gave the input to the motor
from 70 to 130 and give each input some time to reach the steady state. The sine
of angles are plotted against the given input . The line is fitted with 1st degree
polynomial to get the slope.[3]

mgcost = P
mgcosf = Ku?
cos K
w2 mg

Figure 14: System at a steady state

Calculations:

After the curve was fitted as a line the equation of the line was found out to be

11

cos @ = 5.42798454 x 10y + 6.33526554 x 1072

Hover Test
1.0 1 —
—— origianal
fitted
__-—-""./

0.9 4 /

0.8 4
@
=)
=
m
G
© 0.7
[=]
o

0.6 //’

0.5 //

T T T T T
8000 10000 12000 14000 16000
u™2

Figure 15: Steady State Test
Here we get the equation:

A = 5.42798454 % 107%
mg

The mass of the assembly was calculated to be 15g.

K =798 10 %Ns?

_PL
 ml2
K 2
O =2 38345107302
mL

Final equation for the system comes out to be:

0" + A0’ + Bcost =C

0" + 37.0016" — 70.707 cos 6 = 3.834 * 101>

12

Transfer Function:
Taking the Laplace transform of 8” + A¢' + Bcosf = C
Linearizing about 8 = 0 we get cosf =1

s*L(0) + AsL(0) + Blﬁ(e) = 3.834 % 10*333.6(14)
S S

L£(0) 3834x107°%
L(u) s2+ As+ B2

LO) _ . 7.668 + 10~
L(u) s+ 37.001s* + 70.707s2

5 Problems Faced with Solutions

1. High Friction between the pillars and arm:

To solve this problem I tried to shift the position of bearings axially. But they
were permanently glued together. Hence, I gave a cut to the top part so that
there is no force to hold the two pillars together.

2. Hysteresis of the shaft inserted into the encoder:

While recording the angles there is a lag of 5° to 10°. It was due to the clearance
fit between the shaft and encoder. I wrapped the shaft with tape to make it an
interference fit.

6 Conclusion

By conducting the above tests, we can experimentally verify the system coefficients.
This is the open loop system which will be used with a controller. The equation found
is very robust and should be used with a feedback loop. The system parameters are
robust due to the imperfect construction of the T-REX.

References

[1] ARRIS Swift Series 20A 2-4S BEC 5V/1A Brushless ESC for RC Multi-rotor.
https://www.rc-wing.com/arris-swift-20a-2-3s-blheli-brushless-
esc.html. (Accessed on 02/20/2021).

[2] Downloads — Tangibles That Teach. https://www.tangiblesthatteach.com/
downloads. (Accessed on 02/20/2021).

13

Eniko T Enikov and Giampiero Campa. “Mechatronic aeropendulum: demonstra-
tion of linear and nonlinear feedback control principles with matlab /simulink real-
time windows target”. In: IEEFE transactions on education 55.4 (2012), pp. 538—
545.

F.Lab’s DIYbio Centrifuge by F_Lab_TH - Thingiverse. https://www.thingiverse.
com/thing:1175393. (Accessed on 02/20,/2021).

Rugiong Qin and Chunyi Duan. “The principle and applications of Bernoulli equa-
tion”. In: Journal of Physics: Conference Series. Vol. 916. 1. IOP Publishing. 2017,
p. 012038.

Racerstar Racing Edition 1306 BR1306 4000K'V 1-2S Brushless Motor CW/CCW

For 150 180 200 Multirotor. https://www.racerstar.com/racerstar-racing-
edition-1306-br1306-4000kv-1-2s-brushless-motor-cw-or-ccw-for-
150-200-rc-drone - fpv-racing-multi-rotor-p-32.html. (Accessed on
02/20/2021).

The Potentiometer And Wiring Guide - Build Electronic Circuits. https://www.
build-electronic-circuits.com/potentiometer/. (Accessed on 02/20,/2021).

14

Appendices

1. Python: Import data from a Serial Port

import serial

import time

import matplotlib.pyplot as plt
import csv

set up the serial line
ser = serial.Serial(’/dev/ttyUSBO’, 115200)
start=time.time()

Read and record the data
data =[] # empty list to store the data
t=[]
while True:
print ("START")
for i in range(1000):
print("ready")
b = ser.readline() # read a byte string
string_ n = b.decode(’IS0-8859-1’) # decode byte string into Unicode
string = string n.rstrip() # remove \n and \r

flt = float(string) # convert string to float
print (string)

data.append(string) # add to the end of data list
t.append(time.time()-start)

time.sleep(0.2) # wait (sleep) 0.1 seconds

with open("full.csv","w") as f:
wr = csv.writer(f,delimiter="\n")
wr.writerow(data)
wr.writerows((data,t))

plt.plot(t,data)
plt.show()

ser.close()
2. Python: Process the data

import csv

15

import numpy as np
import matplotlib.pyplot as plt
import math

a=np.empty ((0))

with open(’out.csv’, newline=’\n’) as csvfile:

spamreader = csv.reader(csvfile, delimiter=’ ’, quotechar=’|’)

for row in spamreader:
a=np.append(a,float(’’.join(row)))

poly=[3,2,1]
final=np.resize(a, (2,int(len(a)/2)))

t=final[1] [0:-5]

t=t-final[1] [0:-5] [0]
angle=final[0] [0:-5]

t=final[1]

t=(t-final[1][0])

angle=final[0]

y=angle
ycos=np.cos(np.radians(angle))

ax=plt.subplot(311)

z = np.polyfit(t, ycos, poly[0])

print(z)

f = np.polyld(z)

print("equation of cos(theta): ",f)

x_new = np.linspace(t[0], t[-1], len(angle))

y_new_cos = f(x_new) # fitted

ax.plot(t,ycos)
ax.plot(x_new, y_new_cos)
plt.legend([’origianal’, ’fitted’])

16

plt.xlabel("time")
plt.ylabel("cos of angle")
plt.title("Drop Test")

plt.show()

z = np.polyfit(t, y, polyl[0])
print(z)
f = np.polyld(z)

print("equation of theta: ",f)

x_new = np.linspace(t[0], t[-1], len(angle))
y_new = f(x_new) # fitted

ax=plt.subplot(312)

ydash=np.gradient (y)
ax.plot(x_new, ydash)

z = np.polyfit(t, ydash, poly[1])
print(z)

f = np.polyld(z)

print("equation of theta’: ",f)

x_new = np.linspace(t[0], t[-1], len(angle))
y_new_dash = f(x_new) # fitted

ax.plot(x_new, y_new_dash)

plt.xlabel("time")
plt.ylabel("angle’")

17

ax=plt.subplot(313)

yddash=np.gradient (ydash)
ax.plot(x_new, yddash)

z = np.polyfit(t, yddash, poly[2])
print(z)
f = np.polyld(z)

print("equation of theta’’: ",f)

x_new = np.linspace(t[0], t[-1], len(angle))
y_new_ddash = f(x_new) # fitted

ax.plot(x_new, y_new_ddash)
plt.xlabel("time")
plt.ylabel("angle’’")

y_new, ydash, yddash

theta=np.transpose(np.vstack((y_new_cos,ydash,yddash)))
b=np.zeros(y_new.shape)+0.0001

x=np.linalg.lstsq(theta,b)
x=np.matmul (np.linalg.pinv(theta),b)

x=x/x[2]
print("Coeficients of cos(theta), theta’, theta’’: "+str(x))

plt.show()

18

