Industrial Automation Project 2

Kedar More

Abstract

This project will build on the previous project and use the Con-
tinuous time controller to design a Discrete time controller. This will
be implemented on the system and check the differences in the out-
put. The end goal is to make the system stable with a Discrete time
controller.

1 Introduction

Till now we were working on the continuous-time systems. But it is not al-
ways feasible and out of reach of several hardware. Hence it is necessary to
discretise our signal so the the hardware will be able to read it. Also there
must be some time for the hard to give out some signal to the actuators
according to the input. All this cant be done using a continuous feedback
loop. In this report we will go over several methods of signal sampling and
implement them on Arduino Due. In Matlab there are several inbiult emula-
tion methods of which we will try the Forward Euler’s and Tustin’s method.
Also we will see the on paper derivation of these and try our own controller
block. Lastly we will try to disretise the singal using the concept of Interupt
Service Routine to give the output in a specific interval of time.

2 Emulation

2.1 What is Emulation

Emulation is basically a method of converting a continuous time controller
to a discrete time controller. The term ”emulation” comes from the verb
“emulate,” which means to imitate or reproduce.

2.2 Difference between Emulations

There are 3 types of emulation methods:[3]

1. Forward Euler Method: Also known as Forward-difference approxima-

tion, it is possible that a stable continuous-time system is mapped into
an unstable discrete-time system.

. Backward Euler Method: Also known as Backward approximation, a
stable continuous-time system will always give a stable discrete-time
system.

. Tustin’s or Trapezoidal Method: It has the advantage that the left half

s-plane is transformed into the unit disc in the z-plane.

Continous time function Euler's Backward Method

output
(=]

Euler's Forward Method " Tustin's Method

output
(=]

T T T T T T T T T T

0.0 25 50 75 100 00 25 50 75 100
time time

Figure 1: Types of Emulation Methods

2.3 Continuous time controller

The best controller which was developed in the Project 1 was:

u+400

{—70*(6 30 +1)+3%du u>0
y:

20 u <0

This is a (non-linear P)D controller where the non linear term was decided

by experimenting with the system. A linear P controller would make the
system system unstable by an impulse input. Adding D to it would reduce
the amplitude of the output but would not damp it as needed. Hence the
new P controller was there to input a lesser value than expected for a larger

error and vice versa.

64
62
60 /

581 o

56 - /
54 //

2

50f}0—

48 t

0 30 100 150 200
Figure 2: Non-linear Proportional controller

Taking a Laplace transform of the equation:

L(=T70 % (e750° +1) 4 3% du)
= L(—70 * e m0ts — 70 4 3 % du)
21000 70 3

-—+

(300s + 1)es s s

2.4 FEuler’s Forward Method
Derivation:
Using z-transform to eliminate the input.
z=e

As the sampling frequencies are very small we can approximate using the

Taylor series.
z=1+4st
z—1

t

Substituting the above result in the controller.

S =

Changing the pieces from s > 0 and s < 0toz > 1land z < 1 as t is

always positive.

_% - 27701 + z§1 zZ Z 1
Yy = (300%5=+1)e3 T t
50 z<1

113822—22762+1138

B —97.252497.25 P Z 1
Y= 150 L <1

where t=0.001

2.5 Tustin’s Method
We use the matlab function ¢2d() to emulate the system using Tustin’s

method.

Command Window

== s=tf("s")

Continuous-time transfer functien.
==y = 21000/ ((300%s + 1)*exp(4,3)) - 67/(s)
y =
-89.725e04 s - 254.2
1138 72 + 3.794 5
Continuous-time transfer functien.
== y = c2d(y,0.001, ' tustin')
y =

-0.04273 z°2 - 1.117e-07 z + 0.04273

Sample time: 0.001 seconds
Discrete-time transfer function.

f{::-::-|

Figure 3: Tustin calculation

The final z transform after the using the tustin method is:

—0.0427322—1.117%10~7240.04273
22—22+1 z Z 1

Y7 50 L <1

3 Simulink Implementation #1

3.1 Solvers

There are 12 types of solvers namely Fixed-Step, Variable-Step, Continu-
ous, Discrete, Explicit, Implicit Continuous, One-Step, Multistep Continu-
ous, Single-Order, Variable-Order Continuous Solvers. 2]

To choose the correct solver for our system we need to incorporate the
following criteria:

1. System dynamics
2. Solution stability
3. Computation speed

4. Solver robustness

Computation Step Size Type

Fixed-step solvers, as the name suggests, solve the model using the same
step size from the beginning to the end of the simulation. You can specify
the step size or let the solver choose it. Generally, decreasing the step size
increases the accuracy of the results and the time required to simulate the
system.

Variable-step solvers vary the step size during the simulation. These
solvers reduce the step size to increase accuracy at certain events during the
simulation of the model, such as rapid state changes, zero-crossing events,
etc. Also, they increase the step size to avoid taking unnecessary steps when
the states of a model change slowly. Computing the step size adds to the
computational overhead at each step. However, it can reduce the total num-
ber of steps, and hence the simulation time required to maintain a specified
level of accuracy for models with zero-crossings, rapidly changing states, and
other events requiring extra computation.

Model States

Continuous solvers use numerical integration to compute continuous states
of a model at the current time step based on the states at previous time
steps and the state derivatives. Continuous solvers rely on individual blocks
to compute the values of the discrete states of the model at each time step.

Discrete solvers are primarily used for solving purely discrete models.
They compute only the next simulation time step for a model. When they
perform this computation, they rely on each block in the model to update
its individual discrete state. They do not compute continuous states.

No

r

Does the model
have continuous

Library of Solvers

Yes

states?

Fixed-Step Solver?

r

Does the model
have continuous

Yes

states?

Fixed-Step
Discrete Solver

Fixed-Step
Continuous Solver

Variable-Step
Discrete Solver

Variable-Step
Continuous Solver

ode1 odeb ode 155 ode 4b
ode2 ode8 ode 23s ode 23
oded ode 14x ode 23t ode 113
ode 4 ade 23th

Figure 4: Choosing a solver

3.2 Implementation using ”odel”

Figure 5: Step response using odel solver

As expected the response for the solver "odel” is much slower than the
"auto”. The main reason is the approximation till 1st degree differential.
Yet, the system is stable for a step response with a delayed response.

4 Simulink Implementation #2

4.1 Transfer Blocks

Here the Matlab functions are used to calculate the transfer function with the
given input. The same feedback structure is used as in the previous project
but the controller is changed as shown below. Instead of the continuous one
I discretised it using two methods of the z transform.

simulink2/Subsystem * - Simulink academic use

SIMULATION MODELING HARDWARE

Hardware Board
Hardware ~ || StepTime | inf Monitor | REVIEWRESULTS | DEPLOY

Arduino Due
Settings & Tune +

-
HARDWARE BOARD PREPARE RUN ON HARDWARE

fcn
y = (-07.25% + 07.26)(1138"°2 - 227640 + 1138);

Forward Euler Method

SIMULATION MODELING

Hardware Board

Haraware ~ || stopTime [in Monitor | REVIEWRESULTS | DEPLOY

Arduino Due
Settings & Tune +

- -
HARDWARE BOARD FREFARE RUN ON HARDWARE

fcn
¥y = -1250%(- 0.04273"u"2 - 1L11T10N-7)*u + 0.04273)/("2 - 2*u+ 1),

TUSTIN'S Method

Figure 7: Tustin’s method implemented

4.2 Output

Figure 8: System becoming unstable (forward euler)

=

Figure 9: System is somewhat stable (tustin’s method)

Euler’s forward method made the system unstable with a range of sample
times. Tustin’s method does a better job at encompassing the actual signal
rather than Forward Euler method. the slope of the line between the sample
is as close as possible the original signal. This accurately gives the output to
the controller without too much change.

5 Arduino Due Implementation

5.1 Feedback using Potentiometer

Figure 10: Code uploaded using Arduino

5.1.1 Code

The most important part of the code was to implement an interrupt timer
routine to build the required discrete controller. The interupt is a software
protocol which is associated to a function. It is used to run the function
with a priority. When an interrupt is run all the other implementations are
stopped and that function is completed.

An interrupt handler, also known as an interrupt service routine (ISR),
is a callback subroutine in an operating system or device driver whose exe-
cution is triggered by the reception of an interrupt. Interrupt handlers have
a multitude of functions, which vary based on the reason the interrupt was
generated and the speed at which the Interrupt Handler completes its task.

Converting the z -transform to code:

y —0.042732% — 1.117 % 10~ "z 4 0.04273

u 22 -2z2+41
Dividing numerator and denominator by 22

i —0.04273 — 1.117 % 1077271 4+ 0.04273272

Uu; 1 —2z714 272

Yi — 2Ui1 + Yi_o = —0.04273u; — 1.117 % 10,7, + 0.04273,,_,

10

5.1.2 Controller

The original non linear controller could not be implemented here as there a
limit to which we can stall the interrupt function. If there are many computa-
tions in the interrupt the the hardware will be slowed down. This will change
the results for that particular sample time. Hence a linear PD controller was
implemented with the following constants.

kp = 0.6, kd = 0.005

Figure 11: Step response of T-RECS[4] with a feedback from potentiometer

11

5.2 Feedback using Encoder

Figure 12: AMT 102 rotary encoder

5.2.1 Connections

4 pins from the encoder are used to take feedback.

Encoder | Arduino
5V 5V
G Gnd
A D2
B D12

5.2.2 Code

To run the encoder some of the registers in Arduino Due need to be set and
reset. The resolution of this encoder is 12 bits which is more than enough
for the accuracy we need.|[1]

REG_PMC_PCERO = PMC_PCERO_PID27;
REG_TCO_BMR = TC_BMR_QDEN;
REG_TCO_CMRO = TC_CMR_TCCLKS_XCO;

12

REG_TCO_BMR = TC_BMR_QDEN | TC_BMR_POSEN | TC_BMR_EDGPHA;
REG_TCO_CCRO = TC_CCR_CLKEN | TC_CCR_SWTRG;

Rest of teh things are same as the above implementation such as the
mapping of angles and the ISR.
5.2.3 Controller

The controller is kept the same and the results are plot with approximately
similar disturbance.

Figure 13: Step response of T-RECS with a feedback from AMT 102 rotary
encoder

6 Conclusion

The rotary encoder work better than the potentiometer by a small margin.
Visually it seem to be more smooth as apposed to the jagged path taken
by the potentiometer. The resolution difference come to play here as the
sudden changes are registered. When a huge change occurs PID controller
tend to fail as the P term gets comically large and as the system approaches
its steady state the velocity becomes to huge to be controlled by the D term.
Hence small changes are preferred which is provided by the encoder. Finally
it is concluded that using Tustin’s method is the best and the most feasible

13

method to discretise the signal for a feedback controller. While using the in
built function for the Simulink the AutoFixedStep can be used to get good
results.

References

1]

Arduino Due reads encoder — Details — Hackaday.io. https://hackaday.
io/project/13084-1load-frame-update/log/48234-arduino-due-
reads-encoder. (Accessed on 05/07/2021).

Choose a Solver - MATLAB & Simulink. https : //www . mathworks .
com/help/simulink / ug/ choose - a-solver . html. (Accessed on

05/07/2021).

Forward and Backward Euler Methods. https://web.mit.edu/10.001/
Web/Course_Notes/Differential _Equations_Notes/node3.html.
(Accessed on 05/07/2021).

T-RECS System — Tangibles That Teach. https://www.tangiblesthatteach.
com/product-page/t-recs-system. (Accessed on 05/07/2021).

14

